Occasional exhaust fan

11055094 IRIS DAMPER D250

The Iris damper finely balances a circular ducting system, while ensuring a very low leak rate (class C airtight performance).

PRODUCT BENEFITS

precise airflow control.
class C airtight performance as per EN 1751

Principles of operation

The Iris diaphragm is opened and closed using a handle which operates a hexagonal nut.

Product description

The Iris damper features a diaphragm for precise adjustment of airflow in a circular ducting system. This adjustment is made using a handle which operates a hexagonal nut. Lip seals at each end enable a ducting connection with a low leak rate.

Fields of application

Multi-occupancy residential housing, New, Refurbishment, Non-residential buildings

Installation

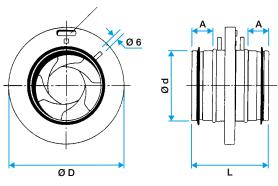
- in circular ducts.
- the IRIS damper must be installed in accordance with the required distances to reduce deviation of airflow to a minimum,
- the required distances to observe are:
- before bends: 1xD.
- after bends: 1xD.
- before T-pieces: 2xD,
- after T-pieces: 2xD,
- before diffusers: the 2xD.

Reference arguments

- Iris damper enabling precise adjustment of diaphragm using hexagonal nut.
- Lip seals on connection sleeves.
- Adjustment tolerance on airflow of 7%.

Main characteristics

- airflow setting tolerance +/-10%,
- airflow / pressure measurement tap integrated (Ø 6 mm),
- class C product airtight performance as per EN 1751,
- temperature range: -20°C / +80°C.

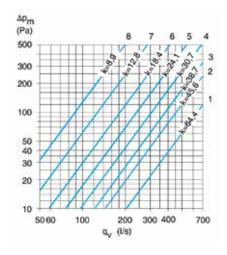


Occasional exhaust fan

11055094 IRIS DAMPER D250

Dimensional data

Variants	A (mm)	H (mm)	L (mm)	Ø (mm)	Weight (kg)
11055094	40	32	135	250	2,1


Airflow data

Variants	Pressure range (Pa)
11055094	10-500

Regulatory data

Variants	Airtightness class
11055094	C

Curve

- > fast airflow or load readout.
- > precise readout: use formula $Qv = k \sqrt{\Delta Pm}$.